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ABSTRACT Drones equipped with thermal sensors have shown ability to overcome some of the limi-
tations often associated with traditional human‐occupied aerial surveys (e.g., low detection, high opera-
tional cost, human safety risk). However, their accuracy and reliability as a valid population technique have
not been adequately tested. We tested the effectiveness of using a miniaturized thermal sensor equipped to a
drone (thermal drone) for surveying white‐tailed deer (Odocoileus virginianus) populations using a captive
deer population with a highly constrained (hereafter, known) abundance (151–163 deer, midpoint
157 [87–94 deer/km2, midpoint 90 deer/km2]) at Auburn University’s deer research facility, Alabama,
USA, 16–17 March 2017. We flew 3 flights beginning 30 minutes prior to sunrise and sunset (1 morning
and 2 evening) consisting of 15 nonoverlapping parallel transects (18.8 km) using a small fixed‐wing aircraft
equipped with a nonradiometric thermal infrared imager. Deer were identified by 2 separate observers by
their contrast against background thermal radiation and body shape. Our average thermal drone density
estimate (69.8 deer/km2, 95% CI= 52.2–87.6), was 78% of the mean known value of 90.2 deer/km2,
exceeding most sighting probabilities observed with thermal surveys conducted using human‐occupied
aircraft. Thermal contrast between animals and background was improved during evening flights and our
drone‐based density estimate (82.7 deer/km2) was 92% of the mean known value. This indicates that time
of flight, in conjunction with local vegetation types, determines thermal contrast and influences ability to
distinguish deer. The method provides the ability to perform accurate and reliable population surveys in a
safe and cost‐effective manner compared with traditional aerial surveys and is only expected to continue to
improve as sensor technology and machine learning analytics continue to advance. Furthermore, the precise
replicability of autonomous flights at future dates results in methodology with superior spatial precision that
increases statistical power to detect population trends across surveys. © 2020 The Wildlife Society.

KEY WORDS aerial, deer, density estimation, drones, Odocoileus virginianus, population methods, thermal imaging,
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One of the primary tenets of population management is that
abundance and monitoring information accurately describe the
current population state or trend (Collier et al. 2013). The

testing and adoption of methods that provide rigorous, accurate
estimates of population size is not only relevant, but requisite for
informed population management of many wildlife species
(Williams et al. 2002, Collier et al. 2013). However, true
population size for most wild populations is unknown (e.g.,
Yoccoz et al. 2001, Hodgson et al. 2016). Unless a survey
method has been tested on a population of known size, it is not
possible to directly assess the accuracy of any count method.
Few, if any, species have had more work focused on pop-

ulation size estimation and methodological evaluation than the
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white‐tailed deer (Odocoileus virginianus; hereafter, deer;
Gill et al. 1997, Lancia et al. 2005, Collier et al. 2013). A
variety of survey techniques have been developed for esti-
mating deer population size: browse surveys (Aldous 1944,
Tremblay et al. 2005), harvest data reconstruction (Roseberry
and Woolf 1991, Millspaugh et al. 2009), pellet counts
(Eberhardt and Van Etten 1956, Van Etten and
Bennett 1965, Goode et al. 2014), ground‐based infrared and
thermal imaging surveys (Wiggers and Beckerman 1993,
Gill et al. 1997, Collier et al. 2007), spotlight surveys
(McCullough 1982, Mitchell 1986, DeYoung 2011), and
camera surveys (Jacobson et al. 1997, Koerth and Kroll 2000)
among others. However, aerial surveys remain the best option
for counting large mammals, especially over large areas
(Caughley 1974, Jachmann 1991, Linchant et al. 2015).
Aerial surveys provide more reliable estimates of population
size than ground‐based techniques (Naugle et al. 1996, Beaver
et al. 2014) because of high detection rates (Bernatas and
Nelson 2004, Millette et al. 2011). Their ability to randomly
sample across the landscape avoided biases inherent to
road‐based sampling (Diefenbach 2005, Drake et al. 2005,
Kissell and Nimmo 2011, Beaver et al. 2014).
Aerial surveys conducted using human‐occupied aircraft

have been primarily based on human visual detection
(Caughley 1974, Poole et al. 2013, Chrétien et al. 2016), are
logistically difficult to implement, costly (Watts et al. 2010,
Linchant et al. 2015), and pose a health risk for operators
(Jones et al. 2006, Watts et al. 2010). Aviation accidents are
the most common cause of work‐related death for wildlife
biologists in the United States (Sasse 2003). The risks and
costs associated with use of human‐occupied aircraft for
aerial surveys makes drones (also known as unmanned aerial
vehicles/systems, remotely piloted aircraft; UAV/S, RPA)
particularly attractive for wildlife population assessments.
Early use of drones has shown a vast array of diverse
ecological applications (e.g., Vermeulen et al. 2013,
Christiansen et al. 2016, Evans et al. 2016, Wich
et al. 2016) and the ability to reduce cost and risk to humans
(Watts et al. 2010, Seymour et al. 2017). Additionally, they
provide easier logistics and manipulation than manned air-
craft and avoid disturbances associated with ground surveys
(Linchant et al. 2015, Hodgson et al. 2018). These benefits
have led many practitioners to label drones as a powerful
tool for wildlife ecology (Chabot and Bird 2012, Linchant
et al. 2015, Christie et al. 2016, Seymour et al. 2017).
An emerging area in drone research is miniaturized sen-

sors that allow data to be collected at extremely fine spatial
and temporal resolutions highly suited to ecological appli-
cations (Watts et al. 2012, Anderson and Gaston 2013,
Messinger et al. 2016, Hodgson et al. 2018). Among the
most popular of the commercially available is thermal in-
frared sensors (hereafter, thermal; Kissell and Nimmo
2011), which provides a high‐contrast method of discrim-
inating endotherms from their surroundings (Stark
et al. 2014, Burke et al. 2019) and allows for detection of
animals at night and in low light conditions, which is an
advantage over conventional multispectral (red–green–blue;
RGB) cameras (Israel 2011, Witczuk et al. 2018). However,

previous approaches using thermal infrared sensors in het-
erogeneous landscapes have experienced visibility limi-
tations similar to those found in traditional photographic
methods in similar environments, with the landscape ob-
scuring animals not only through occlusion, but also
through isothermality, or lack of difference between the
animal’s thermal signature and that of the background
(Witczuk et al. 2018).
Early results indicate the use of drones equipped with

RGB and thermal cameras in wildlife monitoring may be a
viable alternative to typical field methods (e.g., Christie
et al. 2016, Seymour et al. 2017, Hodgson et al. 2018,
Linchant et al. 2018, Witczuk et al. 2018), though direct
comparisons of wildlife population estimates to known
populations remains unstudied. Furthermore, as drone
platforms, sensors, and computer vision techniques develop,
the accuracy and cost‐effectiveness of drone‐based ap-
proaches also will likely improve (Hodgson et al. 2018). Yet,
important issues must be resolved prior to wider drone ap-
plication, including short flight endurance, optimizing res-
olution with area coverage, and regulatory hurdles such as
the requirement in many jurisdictions to maintain visual
line‐of‐sight with the aircraft at all times (Linchant
et al. 2018). Additionally, methods for estimating wildlife
populations remain poorly understood because most drone‐
based surveys to date have focused on the plausibility of
wildlife monitoring applications rather than their effective-
ness as a viable improvement upon current survey methods
(Linchant et al. 2015).
The primary objective of our study was to determine the

effectiveness of using drones equipped with thermal for
surveying wildlife populations by estimating deer density
and abundance for a captive deer population with a highly
constrained (hereafter, known) abundance. We predicted
this method would provide improved detection rates and
more reliable population estimates than current aerial survey
methods while also providing biologists and wildlife man-
agers with a benchmark by which to compare and validate
their existing survey methods. We also identify strengths
and weaknesses of the drone‐based thermal approach as a
real‐time survey tool and suggest paths for improvements
and future directions.

STUDY AREA

We conducted our study at Auburn University’s deer research
facility located in Lee County, which lies in the Piedmont
region of east‐central Alabama, USA (Fig. 1). The facility was
constructed in October 2007 and consisted of 174 ha enclosed
by 2.5‐m steel fence. The enclosed population consisted of
wild animals captured during the construction of the facility
and their descendants. Vegetation was approximately 40%
open fields maintained for hay production; 13% bottomland
hardwoods (various oak [Quercus spp.]); 26% mature, naturally
regenerated mixed hardwoods (various oak and hickory
[Carya spp.]) and loblolly pine (Pinus taeda); 11% early
regenerated thicket areas consisting primarily of Rubus
spp., sweetgum (Liquidambar styraciflua), eastern red cedar
( Juniperus virginiana), and Chinese privet (Ligustrum sinense);
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and 10% 10–15‐year‐old loblolly pine. A second‐order creek
bisected the property and provided a stable source of water
year‐round. For a more complete description of the facility,
see Neuman et al. (2016) and Newbolt et al. (2017).

METHODS

Data Collection
We conducted all surveys over the study area using the
Ritewing Drak aircraft, a small flying‐wing style fixed‐wing
aircraft with a 1.5‐m wingspan and maximum takeoff
weight of 4.3 kg. The aircraft was controlled by a Cube
Autopilot (Hex Technology Ltd, Hong Kong, CN) running
the ArduPlane software stack (ArduPilot, http://firmware.
ardupilot.org/Plane/, accessed 10 Mar 2017), which is
common in research applications because it provides a
powerful suite of capabilities in an open source environ-
ment. We programmed flight paths using Mission Planner
(Mission Planner Version 1.3, http://ardupilot.org/planner/,
accessed 10 Mar 2017) using the integral terrain‐following
feature to allow for precise, repeatable flights at a fixed
altitude above‐ground‐level (AGL; postflight data logs show
altitude on mapping legs of flight were constrained to
within ±2.5 m with little to no variation in speed). The drone
was hand‐flown during take‐off and landing using the

remote‐control system while all other phases of flight were
under autopilot control and monitored using Mission
Planner.
The aircraft was equipped with the 640 × 480‐pixel

nonradiometric thermal infrared imager (FLIR Vue Pro
640, 13‐mm lens, 45° horizontal FOV, 30 Hz; FLIR
Systems, Inc., Wilsonville, OR, USA). All sensors were
fixed to the airframe, flight plans identical, and thermal
sensor internally calibrated, ensuring repeatability among
flights. The camera was mounted looking vertically
downward to obtain the nadir view, and the horizontal axis
of the camera was aligned perpendicular to the flight path.
This sensor was self‐calibrating, with a precision of
0.05° C (<50 mk).
We made 3 total flights, with 1 morning flight on

16 March 2017 and 2 evening flights on 16 and
17 March 2017, all of which were initiated 30 minutes prior
to sunrise and sunset. Mean temperature during the
morning flight was −2° C while the mean temperatures
during the evening flights were 13° C on 16 March and
21° C on 17 March (Auburn Airport weather station,
Auburn, AL, USA). Weather was calm (winds <6 km/hr)
and clear on both days (Auburn Airport weather station).
We performed flights at 100 m AGL (±2.5 m), providing

an 84‐m horizontal field of view and a resolution (pixel‐size)

Figure 1. Flight path (white lines) and transects flown (highlighted in yellow and labelled) at Auburn University deer research facility, Alabama, USA,
16–17 March 2017, for white‐tailed deer thermal drone surveys.
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of 13‐cm ground sample distance, which determines the size
of the smallest object that can be resolved in imagery. The
aircraft flew at a nominal ground speed of approximately
21 m/second (75 km/hr) in an east–west‐oriented transect
pattern, with 15 parallel transects, totaling 18.8 km in
length, spaced evenly 100 m apart across the study area
(Fig. 2). We collected video and telemetry data continuously
in flight. After flight, we trimmed telemetry logs from the
autopilot to correspond with video clips, reformatted for
ingestion into ArcGIS Full Motion Video (FMV; Envi-
ronmental Systems Research Institute, Inc., Redlands, CA,
USA), and multiplexed the 2 in FMV to create georefer-
enced video.

Video Analysis
We analyzed georeferenced video footage from each of the
3 flights at half speed by 2 separate observers to compare the
effects of observer performance and flight conditions on
resulting density estimates. We identified deer by their
contrast against background thermal radiation and body
shape. When a thermal signature of an animal (or group of
animals) was detected, we marked the location and time of
each observation and recorded using FMV to mark loca-
tions of each individual and ensure density estimates were
generated from observations of the same animals (Fig. 2).
We evaluated observation agreement among observers by
binning individual observations within 5‐second windows
and comparing the kernel‐smoothed probability density of
the observation time (time a deer was detected) for each
observer to control for small differences in observer recog-
nition (package sm; Bowman and Azzalini 2018) in

Program R (R Version 3.4.0, www.r‐project.org, accessed
2 Feb 2019).

Population Estimation
We conducted data analysis in Program R using package car
(Fox and Weisberg 2011). We used 2 methods to assess
deer abundance from thermal footage. The first used
transects to provide a sample‐based density estimate
(deer/km2). We summed deer observations by flight transect
and divided by their respective areas (transect length ×
estimated strip width [field of view]) to calculate transect‐
specific densities per observer (Naugle et al. 1996). We then
subsetted transect densities into 3 groups of every third
transect so that each used transect was 300 m apart to avoid
the possibility of multiple observations of animals
across consecutive transects (i.e., transects for Group 1: 1, 4,
7, 10, 13; Group 2: 2, 5, 8, 11, 14; Group 3: 3, 6, 9, 12, 15).
However, it is worth noting that multiple detections of the
same animals on different transects do not introduce bias if
animal movement is random relative to the transect lines
(Buckland et al. 2001). We then calculated a mean density
per flight by averaging the 3 mean group densities. We
repeated this process per observer.
The second method to assess abundance used the total

number of deer counted per complete flight. We adjusted
total count values by flight area to account for incomplete
area coverage (87%) of flights. We generated confidence
intervals (95% CI) of calculated abundances and densities
from a 10,000‐iteration bootstrapped distribution of
transect‐specific densities and counts averaged between
observers. We compared mean population estimates and

Figure 2. Screenshot illustrating ESRI’s Full Motion Video add‐in tool used to identify and georeference individuals (or group of animals) detected during
aerial thermal drone flights, within the Auburn University deer research facility in Alabama, USA, 16–17 March 2017. Full Motion Video allowed us to
observe the flight footage and current location of the aircraft along our flight path when marking locations of each individual and for comparison among
observers. Yellow lines indicate programed aircraft flight path and transects and purple lines indicate actual aircraft flight path. Colored dots indicate marked
white‐tailed deer observations.
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their 95% CIs between flights to access the reliability of the
method. We also calculated the mean and standard error of
estimate difference between observers as an additional
measure of reliability. We conducted both estimates without
prior knowledge of the known population size.

Accuracy Assessment
The deer population at Auburn University’s deer research
facility was intensively monitored, with capturing and
camera surveys occurring each year to track the population.
Researchers previously had captured individuals within the
facility and assigned them a unique number, freeze‐branded
them, and tagged them in both ears with cattle ear tags (see
Neuman et al. [2016] and Newbolt et al. [2017] for specific
capture and handling techniques). Capture techniques fol-
lowed American Society of Mammalogists’ guidelines
(Sikes et al. 2011) and were in accordance with Auburn
University’s Institutional Animal Care and Use Committee
(PRNs 2008‐1417, 2008‐1421, 2010‐1785, 2011‐1971,
2013‐2372, 2016‐2964, 2016‐2985). Researchers captured
and released a number (10–15 individuals) of young‐of‐the‐
year deer outside the facility at approximately 6 months of
age each year to control deer density and maintain appro-
priate numbers of individuals across age classes. Natural
mortalities further mediated the population density of the
facility. The deer within the facility had no movement re-
strictions other than the high fence boundary. Occasionally,
researchers missed a deer during annual tagging, and the
vegetation characteristics and large size of the facility did
not allow for continuous monitoring of all individuals over
the course of the study. As such, we used a combination of
methods similar to Keever et al. (2017) to estimate our
known deer abundance. No hunting occurred within the
research facility.

RESULTS

At the time of our study, the Auburn deer facility contained
approximately 151–163 deer (86.8–93.7 deer/km2), with a
midpoint of 157 deer (90.2 deer/km2; Fig. 3). The average

density estimate from the thermal camera equipped
drone from all flights (hereafter, thermal drone) was
69.8 deer/km2 (95% CI= 52.3–87.40), resulting in an
average sighting probability of 78% (56–100%) of the
known estimate, resulting in an overall correction factor of
1.28. Total abundance from thermal drone counts, adjusted
for incomplete coverage (87%) of the study area, was
120 deer (95% CI= 90.9–142.2; Fig. 3) or 56–94% of the
known estimate.
Video analysis indicated differing video contrast between

morning and evening flights (Fig. 4). The mean estimated
population density was lower in the morning flight
(44.4 deer/km2, 95% CI= 19.6–73.3) than in either
evening flight (82.6 deer/km2, 95% CI= 48.8–121.8; and
82.7 deer/km2, 95% CI= 37.7–145.2, respectively).
Estimates based on total counts of deer for the combined
evening flights were 82.7 deer/km2 (147 total deer, 95%
CI= 64.0–101.4 deer/km2), or 92% of the mean known
density (90.2 deer/km2) and 94% of the total abundance
midpoint (157 deer; Fig. 3).
Observers differed overall in their estimates by <6% of the

total, with the estimated difference broadly overlapping zero
(mean inter‐observer difference in counts 4.07± 11.6 deer/km2,
mean± SE) and were largely similar during morning and
evening flights. The probability density distributions of ob-
servations differed between observers in the morning flight but
the shape and structure were nearly identical for evening flights
(Fig. 5), indicating consistent identification of heat signatures
by separate observers in the evening flight but not in the
morning flight.

DISCUSSION

Performance Assessment
Autonomous thermal drone surveys provided an accurate,
time‐efficient, and highly repeatable method of estimating
deer population abundance. Our total counts and density
estimates (147 deer, 82.7 deer/km2) during high‐contrast
evening flights were within approximately 8% of the

Figure 3. Thermal white‐tailed deer population estimates by flight and observer for Auburn University deer research facility, Alabama, USA, 16–17 March
2017. Estimates were calculated using 2 separate approaches: transect‐specific density and total count. Boxes represent interquartile range of transect‐specific
population estimates, midline estimate, and dashed lines represent the range. Dotted lines indicate the total count estimates. Slash line indicated midpoint
for the highly constrained known deer population within the high‐fenced research facility.
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midpoint of the highly constrained known population
(151–163 deer, midpoint 157 [87–94 deer/km2, midpoint
90 deer/km2]) of the captive deer herd. Averaged thermal
drone density estimate from all 3 flights had an estimated
sighting probability of 78% of the assumed 157 individuals,
exceeding the estimated accuracy often reported from sim-
ilar aerial surveys for captive ungulates (usually <75%)
conducted using human‐occupied aircraft (Parker and
Driscoll 1972, Bartmann et al. 1986, Beasom et al. 1986).
Flights under high‐thermal‐contrast conditions achieved an
estimated sighting probability of 92% relative to the as-
sumed density. Several studies have also found that the
detection of deer with thermal imagery from human‐
occupied aerial flights offered a varied performance, with
estimates ranging from 37% to 98% (Croon et al. 1968,
Wiggers and Beckerman 1993, Naugle et al. 1996, Potvin
and Breton 2005). In fact, detection rates reported specifi-
cally for deer‐occupied enclosures are usually 60–80% under
optimal conditions, and <50% when detection conditions
are less favorable (Bartmann et al. 1986, Beasom et al. 1986,
Potvin et al. 1992, Chrétien et al. 2016), much lower than
those found in our study. Recently, some attempts utilizing
drone platforms equipped with either thermal or RGB
sensors have been made to overcome these limitations in-
fluencing sighting probability (e.g., Chrétien et al. 2016,
Linchant et al. 2018, Witczuk et al. 2018).
Sighting probabilities obtained in this study led to esti-

mated correction factors ranging from 8% for the evening
flights to 28% overall. Linchant et al. (2018) used drones
equipped with RGB for a survey of hippopotamuses
(Hippopotamus amphibius) over a homogenous landscape

and estimated a similar correction factor (22%) to our
overall average, and approximately 3 times greater than our
correction factor under optimal contrast conditions. One
advantage of thermal imagers over conventional RGB
cameras is the ability to distinguish animals based on their
body heat and increased detection of animals at night and
during low light conditions (Burke et al. 2019). Chrétien
et al. (2016) concluded that detection of thermal objects was
more accurate than RGB. Witczuk et al. (2018) concluded
that terrestrial ungulates could be identified in both leafless
deciduous forests and coniferous forests using thermal
cameras. During our winter surveys (leaf off) deer were
detected in all major vegetation types (deciduous, mixed,
and coniferous forest, open areas).
Timing of surveys is a critical study component in studies

using thermal imaging because heat emission is not constant
throughout the day (Felton et al. 2010) and can fluctuate
depending on a variety of factors such as weather condition
(e.g., ambient temperature, cloud cover; Burke et al. 2019)
and environment (e.g., land cover, aspect; Franke
et al. 2012, Chrétien et al. 2016, Witczuk et al. 2018, Burke
et al. 2019). This and topographical complexity can result in
unequal warming of areas (thermal cluttering) mediated by
exposure to sunlight (i.e., background thermal radiation
varies across the landscape), and becomes especially im-
portant in areas with objects with high thermal inertia, such
as rocks or boulders and wet ground or water (Burke
et al. 2019). Witczuk et al. (2018) indicated that the con-
trast between trees and ground can influence the ability to
detect animals in forested areas, and found that during
morning flights, some sun‐exposed tree trunks and branches

Figure 4. Thermal images of white‐tailed deer observations in both open vegetation cover and mixed‐deciduous forest from an altitude of 100 m above
ground level during both morning (AM; sunrise) and evening (PM; sunset) flights conducted within the Auburn University deer research facility in Alabama,
USA, 16–17 March 2017. Morning flights occurred within 0619–0719 and evening flights within 1821–1921. Confident thermal signatures of animals are
marked with solid line circles and dashed line circles marked unclear signatures. Time (AM vs. PM) and cover type for each image: (a) AM, open; (b) AM,
forested; (c) PM, open; (d) PM, forested.
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were just beginning to heat up, resulting in thermal clut-
tering and low contrast. Whereas, for evening flights, we
observed that the images had a more homogenous back-
ground such that animal signatures stood out with enough
contrast for relatively easy detection (e.g., Witczuk
et al. 2018). We attribute this to the fact that residual heat
captured during the day by vegetation allowed better dis-
tinction of foliage in forested habitats during evening

flights, causing the ground signature to be relatively cooler.
The accuracy of our data collected during evening flights
suggests a correction factor may not be needed when flight
conditions are optimized for a particular area and time.
Conversely, during morning flights, vegetation was cold as a
result of thermal radiation exchange with the clear sky at
night while the ground remained relatively warm, and deer
then became difficult to distinguish from the background
during this period because of decreased contrast.
We used a nonradiometric sensor that did not allow

temperature thresholds to be set. Thermal exchange be-
tween animals and their environment is well‐understood
(Porter and Gates 1969), and using a radiometric sensor
thermal threshold that can be tailored to the calculated ra-
diative properties of the organism(s) of interest can greatly
increase the thermal contrast between an animal and the
terrain and likely improve accuracy of this technique (e.g.,
Burke et al. 2019).
The ability to conduct flights autonomously allowed for

precisely replicated flight plans. This, in turn, gives wildlife
managers ability to detect relatively small changes in pop-
ulations in similar conditions, thereby improving the ability
to apply and evaluate management efforts while simulta-
neously allowing surveys of difficult terrain and drastic
reductions in risk to personnel.

Human Observers
The vast amount of data and need for multiple observers to
minimize potential observer bias are often described as an
important drawback for using drones for wildlife surveys
(Linchant et al. 2015). However, Linchant et al. (2018)
noted that experienced observers needed smaller correction
factors to estimate the total population of deer and that
estimates from separate observers quickly converge with
small amounts of experience. Our results support this
conclusion—our experienced human observers had con-
sistency in both the time of deer observations and resulting
density estimates of their respective video analyses.
Observer‐specific probability density curves of observation
time were nearly identically shaped for high‐contrast eve-
ning flights, indicating observers generally counted the same
individual animals during the study. However, in the eve-
ning flights there was an approximately 12% difference in
estimates between observers, and observers were consistent
among days to within 2% and 5%, respectively (152 and
154 deer, observer 1; 132 and 135 deer, observer 2), and the
timing of observations show that the observers were
counting the same deer during the flights. During the
morning flight both observers differed by a factor of two in
the number of deer counted (47 vs. 100) and they did so at
different times because of the difficulty in separating the
thermal image of the deer from the thermal clutter in the
landscape, emphasizing the role of flight planning in
obtaining accurate results.
Thermal and RGB drone surveys can collect detailed in-

formation rapidly (Linchant 2015), potentially creating
scenarios where the time and cost of manual classification of
imagery from aerial surveys become exorbitant. Our study

Figure 5. Kernel‐smoothed probability density distribution of recorded
white‐tailed deer observation times for surveys conducted at Auburn
University deer research facility, Alabama, USA, 16–17 March 2017.
Identically shaped curves indicate consistency of observation between
observers.
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area was 1.74 km2 (each flight provided near complete
coverage of our study area and the complete video footage
for each survey was ~20 min only) and our observers only
had 64 total minutes of video footage to analyze. Larger
study areas and more complex data sets might necessitate
automated object recognition and image classification,
which would save time and costs associated with human‐
observer analysis, but would require additional testing and
evaluation (Chabot and Francis 2016, Seymour et al. 2017).
However, development of these technologies is still in its
infancy, and these approaches are of limited use if auto-
mated image classification must be retrained for new data
sets or require extensive set up (e.g., Seymour et al. 2017).
Additionally, Hodgson et al. (2018) illustrated that while
semiautomated counts did streamline the process after al-
gorithm training, manual counts performed equally well.
However, when the number of subjects is large or repeat
counts are required at different time points, labor invest-
ment needed for manual counting can be substantial and
incorporation of machine‐learning capabilities will be more
necessary (Chabot and Francis 2016, Burke et al. 2019).
The enclosed nature of our study area and sole dedication

of the facility to research with deer meant we were unable to
evaluate the ability to distinguish between multiple species,
a potential limitation of the method in areas with multiple
species that are closely related or of similar morphology.
Further research on characteristics of thermal signatures for
other large land‐dwelling mammal species is needed, and
future studies should assess and integrate a correction
method that considers the sighting probability of deer for
different cover types (e.g., deciduous forest, evergreen forest,
open–field; Chrétien et al. 2016). With further development
of drone platforms, sensors, and computer vision techni-
ques, drone‐based approaches to wildlife estimation are also
expected to continue to improve and become more wide-
spread (Longmore et al. 2017, Seymour et al. 2017,
Hodgson et al. 2018). Currently available sensors are easily
mounted on existing camera gimbals on drones and software
programs aid in flight setup and allow for autonomous flight
plans. Although the basic flight operation and computer
software require a learning curve, the primary concern will
be matching adequate sample design to species of interest.
For thermal aerial surveys to be successfully applied to

wildlife management and conservation issues, several aspects
of these surveys must also be considered. First, data quality
will be a function of vegetation cover, topography, and
thermal contrast, and the interactions of these variables will
vary with season, time of day, and region. Second, observer
bias and experience must be accounted for during data
analysis. The effect of training on observer performance is
poorly understood, but common sense dictates that per-
formance will benefit from training. It will be imperative to
have an adequate understanding of the thermal landscape of
a study area and how these variables influence thermal video
contrast before attempting thermal drone surveys. Finally,
study area size will influence successful collection of data
because of technological limitations with drones. Currently,
small drones are limited to flights of several minutes to a few

hours depending on the model and payload, forcing man-
agers to balance coverage area with the minimum resolution
for animal identification. However, expansion of the survey
coverage to larger areas can be expected in the near future as
regulations for civilian use of drones are constantly
changing. As drone surveys are expanded to larger areas,
image processing and analysis workflow will become of
increasing importance.
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