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Although the use of camera traps in wildlife management is well established, technologies to automate image
processing have been much slower in development, despite their potential to drastically reduce personnel
time and cost required to review photos. We developed AnimalFinder in MATLAB® to identify animal presence
in time-lapse camera trap images by comparing individual photos to all images contained within the subset of
images (i.e. photos from the same survey and site), with some manual processing required to remove false pos-
itives and collect other relevant data (species, sex, etc.). We tested AnimalFinder on a set of camera trap images
and compared the presence/absence results with manual-only review with white-tailed deer (Odocoileus
virginianus), wild pigs (Sus scrofa), and raccoons (Procyon lotor). We compared abundance estimates, model
rankings, and coefficient estimates of detection and abundance for white-tailed deer using N-mixture models.
AnimalFinder performance varied depending on a threshold value that affects program sensitivity to frequently
occurring pixels in a series of images. Higher threshold values led to fewer false negatives (missed deer images)
but increased manual processing time, but even at the highest threshold value, the program reduced the images
requiring manual review by ~40% and correctly identified >90% of deer, raccoon, and wild pig images. Estimates
of white-tailed deer were similar between AnimalFinder and the manual-only method (~1-2 deer difference, de-
pending on the model), as were model rankings and coefficient estimates. Our results show that the program sig-
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nificantly reduced data processing time and may increase efficiency of camera trapping surveys.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Camera trap surveys have become increasingly popular for monitor-
ing elusive wildlife in recent years and can provide a way to reduce the
cost of monitoring programs relative to many traditionally invasive and
labor-intensive methods. Rowcliffe and Carbone (2008) documented a
50% annual growth in publications using cameras or assessing camera
survey methodologies between 1998 and 2008; a trend that has
persisted (Burton et al., 2015; Rovero et al., 2013), and will likely to con-
tinue due to ever-improving camera technology and the popularity of
camera traps for citizen science projects (Cohn, 2008). Monitoring
with camera traps is potentially advantageous because surveys are
non-invasive, capture data on elusive animals, reduce field hours, and
provide high quality data. Among other applications, camera trap data,
along with relevant quantitative methods, have been used by re-
searchers to estimate demographic parameters and inventory species,
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for both marked and unmarked populations (e. g. Giman et al., 2007;
Karanth et al., 2006; Keever, 2014). However, there are issues associated
with camera traps surveys, including equipment failures, data manage-
ment requirements, observer errors when manually reviewing photos,
and heterogeneity in the detection probability of individuals within a
population (Meek et al., 2015; Newey et al., 2015; Rovero et al., 2013;
Swann et al., 2011).

Another issue with camera traps is the variability in detection prob-
ability as a result of camera equipment. Most cameras use motion sens-
ing (passive infrared) to detect animals and take photographs, or use
time-lapse photography to take photos at a specified interval regardless
of animal presence (Meek et al., 2015; Rovero et al., 2013; Swann et al.,
2011). Motion sensing results in fewer empty photos (photos without
an animal), but greater sampling variability due to variation in trigger
sensitivity and detection probabilities of individuals and species
(Hamel et al., 2013; Newey et al., 2015; O'Connell et al., 2010; Rovero
et al,, 2013). These differences are apparent between camera makes
and models for detection between and among species (Hamel et al.,
2013; Newey et al., 2015), and even within the same camera model
(Damm et al., 2010; Newey et al,, 2015). It is advised that practitioners
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fully understand the factors that affect camera trap limitations: make
and model quality and the resultant limitations they exhibit (Meek et
al., 2015; Newey et al., 2015). Many different factors contribute to
whether or not a picture is taken, including environmental conditions
at the camera site, size of the object moving in the frame, and sensitiv-
ities of the triggers themselves (Damm, 2010; Meek et al., 2015;
Swann et al., 2004). In contrast, the time-lapse setting takes photos at
specified intervals; thus reducing sampling error. Newey et al. (2015)
reported that motion detection cameras failed to detect 49-68% of ani-
mals captured at the same time by time-lapse data. Hamel et al. (2013)
found that raw error rates in daily presence varied between 30 and 70%
among seven artic/subarctic species (hooded crow, Corvus cornix, com-
mon raven, Corvus corax, white-tailed eagle, Haliaeetus albicilla, golden
eagle, Aquila chrysaetos, arctic fox, Vulpes lagopus, red fox, Vulpes vulpes,
and wolverine, Gulo gulo) using a motion-trigger survey design, while a
5-minute time-lapse setting varied between 5 and 30% among species.
However, time-lapse camera surveys also possess drawbacks, and can
generate a staggering number of uninformative images that must be
manually processed to extract relevant data - adding time and overall
cost to the monitoring program (Harris et al.,, 2010; Newey et al.,
2015). Time-lapse surveys may also miss capturing events that occur
during the time intervals between images, and potentially inappropri-
ate for species occurring at low densities and when sites are not baited
(Hamel et al., 2013; Newey et al., 2015). Ultimately, when designing a
camera survey, researchers and managers must weigh tradeoffs be-
tween greater survey cost and greater sampling variability, considering
both methods risk losing informative images (Hamel et al., 2013; Meek
et al,, 2015; Newey et al., 2015; Swann et al., 2011; Weingarth et al.,
2012).

Significant strides have been made to streamline processing of cam-
era trap images. Harris et al. (2010), Fegraus et al. (2011), Krishnappa
and Turner (2014), He et al. (2016), Niedballa et al. (2016), and
Bubnicki et al. (2016), among others, have developed software packages
for managing large quantities of camera trap images. These programs
offer a wide array of features, including standardization procedures for
retrieval and storage of images, cataloguing options for tagging species
and individuals, and methods for extracting data into a useable format
for further analysis. Species-specific recognition software has also
been developed to assist in identifying individuals of numerous species,
including elephants (Ardovini et al., 2008), tigers (Raj et al., 2015), and
marine mammals (Adams et al., 2006; Gope et al., 2005). These methods
utilize unique individual characteristics and compare images to a cata-
logue of known individuals. Bolger et al. (2012) developed an open
source software package for pattern extraction and matching in a varie-
ty of species, which performed very well on Masai giraffe (Giraffa camel-
opardalis tippelskirchi).

Despite these advancements, there are few automated tools avail-
able to identify animal presence/absence in photos. eMammal is a sub-
scription-based service for camera trap image collection and analysis
that employs a method that identifies animals and species from image
sequences collected triggered by a motion sensor (He et al., 2016). How-
ever, this program analyses sequences of images with multiple pictures
of the same animal within a short span of time and was not developed
for time-lapse images, which frequently only contain a one or two im-
ages per animal encounter. Alternatively, methods to detect motion in
videos captured by camera traps may also be applicable animal identifi-
cation in images if sequences of image files converted into a video file
(Swinnen et al.,, 2014; Weinstein, 2015). These approaches were not op-
timized for images and have not been tested for this application. Similar
to eMammal, images captured using a time-lapse survey may not pro-
vide enough images per animal visit and/or changes between images
may be too drastic relative to changes between video frames. To address
this need, we developed AnimalFinder in MATLAB® (2012b, The
MathWorks, Inc., Natick, Massachusetts, United States) to classify ani-
mal presence/absence in time-lapse photographs. The AnimalFinder
source code is freely available for download (Appendix 1), and was

developed to analyze time-lapse photos by site and survey, producing
a directory of photos likely to contain a medium- to large-bodied ani-
mal. Thereafter, some manual review is required to remove false posi-
tives and collect relevant data (number of animals, sex, etc.). In this
paper we describe the program and test it on a set of camera trap photos
obtained from a white-tailed deer (Odocoileus virginianus) survey. We
estimate population abundance using results from our semi-automated
program vs. manual-only image review and examine differences in
resulting parameter estimates, coefficient estimates, and model rank-
ings and weights. We also consider the potential of the program to de-
tect wild pigs (Sus scrofa) and raccoons (Procyon lotor), two non-
target mammals who frequently visited the baited sites, in addition to
white-tailed deer.

2. Methods
2.1. How the program works

We developed AnimalFinder to identify animal presence/absence in
time-lapse camera trap photos and tested it on white-tailed deer in Al-
abama; however, the system could be applied to other medium- or
large-bodied species that are relatively monotone (we did not directly
test the program on species with stripes or spots). First, the program
takes a set of pictures from one survey location and separates day and
night photos. Due to the different nature of daytime (full color and
shadows) and nighttime (grayscale) pictures, the respective subsets
are processed using different methods. These photos are first converted
to grayscale, and an edge-detection algorithm, called a canny edge de-
tector, is applied to identify lines in the images. Since deer are inherent-
ly smooth, AnimalFinder identifies large areas with low line density and
applies a color saturation mask. The result is a single binary “blob”
which is analyzed in size and shape. Nighttime pictures are first filtered
with a median filter of pixel size 40, and then a canny edge detector is
applied. The result is a binary image of lines.

From this point, the classification of deer presence is the same for
day and night photos. Because the pictures may have common features
that may trigger a false positive classification (i.e. large rocks, bushes,
logs), we use a threshold value that will ignore pixels that appear in a
given frequency throughout the data set (a threshold value of 0.5 will
ignore pixels that are seen in half of images). Finally, the line pixels, ex-
cluding ignored pixels, are counted for each image and those with a
count of line pixels greater than two standard deviations of the respec-
tive subsets are classified as positive animal presence.

2.2. Evaluation of program performance

We tested our program on a dataset of images obtained from a cam-
era survey that was conducted by Keever (2014) at Fort Rucker, Ala-
bama during February and March of 2012. Fort Rucker is a U.S. Army
post located in southeastern Alabama in Dale and Coffee Counties and
is predominantly comprised of pine (Pinus spp.) and mixed pine-hard-
wood forests (Keever, 2014). Twenty camera sites, spaced 2.42 km
apart, were cleared and baited with 11 kg of whole corn for one week.
Then cameras were deployed 4 m away from the bait pile and set to
take an image every 4 min for 7 days. Bait was refreshed with up to
11 kg as necessary every 3-4 days for the duration of the survey.
These images were reviewed manually by Keever (2014), who recorded
raw counts of deer and non-target animals (i.e. pigs, raccoons) observed
in each image. See Keever (2014) for further information regarding
study design.

We ran AnimalFinder on the images collected from the 20 camera
sites using a range of pixel frequency threshold values between 0.01
and 0.95. For each threshold value we compared AnimalFinder perfor-
mance with results obtained from Keever (2014) by counting the num-
ber of images in which both methods classified an image as containing a
deer (deer presence), both methods classified an image as not



J.L. Price Tack et al. / Ecological Informatics 36 (2016) 145-151 147

containing a deer (deer absence), AnimalFinder flagged an image classi-
fied as deer absence by the manual method (type I error), and
AnimalFinder missed an image classified as deer presence by the man-
ual method (type II error).

We selected one frequency threshold value to further test
AnimalFinder by assessing the tradeoff between type II errors and
total number of images flagged. We calculated the change in the propor-
tion of type I errors relative to deer images classified by manual review
and the change in proportion of flagged images relative to the total
number of images reviewed for each incremental increase in the thresh-
old value, and used the threshold value at the equilibrium point be-
tween those two measurements to further test the performance of our
semi-automated approach. We conducted a concordance analysis to es-
timate Cohen's kappa, which measures the normalized difference be-
tween the rate of agreement between the two methods that is
observed and the rate of agreement that would be expected by chance
(Cohen, 1960). We used the presence/absence data obtained from
both methods to estimate Cohen's kappa, replacing AnimalFinder type
[ errors with zeros to simulate the final dataset (assuming further man-
ual review would remove all false positive).

Using the selected threshold value, we constructed count histories
for all deer counted from the manual review-only results and from the
AnimalFinder semi-automated results. Following Keever (2014), we re-
duced the survey occasions to every 12 min and used only images be-
tween 15:36 to 8:12; two hours before mean sunset time until two
hours after mean sunrise time [i.e., we eliminated “day time” photo-
graphs because white-tailed deer are inactive during day time hours
(Keever, 2014)]. We used the count data from the manual-only method
for all images flagged by AnimalFinder; this eliminated potential ob-
server bias that could arise from another observer reviewing the images.
Thus, all correctly classified images and false positives had the same
count data recorded as the observer-only method. When AnimalFinder
committed a Type Il error (missed a deer image) the deer count was re-
corded as zero for that occasion.

We further tested the utility of AnimalFinder for use in time-lapse
camera monitoring programs aimed at estimating demographic param-
eters and covariate effects, and to demonstrate a method for practi-
tioners to conduct their own pilot study to assess the performance of
AnimalFinder with their own images. We used the AnimalFinder results
to estimate deer abundance, and compared the results to estimates
using counts obtained by manual-only review. Some low levels of
overlooked deer (Type Il errors) might be acceptable if the goal is to es-
timate demographic parameters and those estimates are relatively un-
affected by using AnimalFinder compared to the manual-only method.
We estimated total deer abundance, covariate effects on abundance
and detection, and ranked models with AnimalFinder-derived count
histories and manual-only derived count histories from Keever (2014)
using the maximum likelihood, single season N-mixture model devel-
oped by Royle (Royle, 2004) and implemented in function pCount of
the ‘unmarked’ package (Fiske and Chandler, 2011) in R (R Core Team,
2015). Royle's (2004) N-mixture model is a hierarchical abundance es-
timate model that uses spatially or temporally replicated counts of un-
marked individuals in which spatial replicates are achieved by
deploying multiple cameras across space and temporal replicates are
obtained using images captured at given time increments. The N-mix-
ture model is comprised of a binomial model for detection probability
(p) and a Poisson model for abundance (\) and allows for covariates
to be incorporated for both parameters.

Our study estimated mean abundance and detection probability of
white-tailed deer on Fort Rucker using the combined counts of mature
bucks, immature bucks, does, and fawns. We included covariate data
from Keever (2014), including habitat covariates with our abundance
parameter (% of habitat type), and time and precipitation for our detec-
tion parameter. We excluded wild pigs as a covariate because we did
not have the original covariate data, and further, we did not want to
confound performance of AnimalFinder for use on deer with its

performance with wild pigs. Our single-season analysis also necessitat-
ed the elimination of the covariate for season. We selected a subset of
the models developed by Keever (2014), comprised of a null model
and the highest-ranked abundance models with each combination of
detection covariates excluding covariates relating to wild pig or season.

To assess the efficacy of using AnimalFinder for research applica-
tions, in which models with covariates are examined to address com-
peting hypotheses about the ecological system, we compared model
rankings and weights from 20 models using manual-only and
AnimalFinder-derived count histories. We ranked an identical suite of
models for each method using Akaike's information-theoretic criterion
(AIC) and estimated coefficient estimates, model weights, and parame-
ter estimates (Burnham and Anderson, 2002). We then estimated total
abundance and 95% confidence intervals for each method using a para-
metric bootstrap analysis with 1000 iterations.

The original survey by Keever (2014) was intended for white-tailed
deer; however, wild pigs and raccoons were also detected at camera
sites. We examined the ability of the program to correctly identify im-
ages containing these species and considered potential utility to use
AnimalFinder in an occupancy or abundance framework. We deter-
mined the type II error rates for AnimalFinder's detection of an animal
over a range of threshold values when a pig or raccoon was manually
identified. We also calculated the number of days that each species
was correctly detected at each camera site at least once to determine
potential utility of the program in an occupancy framework. Daily pres-
ence data would allow researchers to create occupancy capture histories
with sampling occasions on each day of the survey, and estimate species
occupancy probability in relation to environmental covariates and esti-
mate detection probability.

Finally, we estimated the time savings achieved by using
AnimalFinder relative to the traditional manual-only method. We esti-
mated the rate of images reviewed per hour by recording the time re-
quired for an observer to classify animal presence/absence in a subset
of images and extrapolated the review rate to estimate time required
to review the full set of images and the images flagged by AnimalFinder.
We also recorded the time it took to run the images through
AnimalFinder, but did not include it in the time comparison between
methods because it is inactive time for the observer.

3. Results

Atotal of 65,291 images were collected from 20 cameras, and Keever
(2014) classified 1577 images as containing deer (deer presence), 590
as containing wild pigs, and 2108 as containing raccoons. Increasing
the threshold value of AnimalFinder increased the total number of im-
ages flagged; which varied from 2174 images (3% of total) at a threshold
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Fig. 1. Percent of deer, wild pig, and raccoon images identified by the semi-automated
system compared to the manual-only review and the percent of total images flagged
under a range of threshold values.
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Fig. 2. Percent of site- days with at least one detection for deer, wild pigs, and raccoons by
the automated system compared to the manual-only method and the percent of total
images flagged under a range of threshold values.

of 0.001, to 21,147 images (63%) when the threshold value was set to
0.95. At a threshold value of 0.005, AnimalFinder correctly classified
45% of deer images, 23% of wild pig images, and 18% of raccoon images,
and these numbers increased to 95% of deer images, 97% of wild pig im-
ages, and 94% of raccoon images at a threshold of 0.95 (Fig. 1). If using
the data to apply an occupancy analysis, AnimalFinder correctly detect-
ed at least one individual present on 95% of days with a threshold of
>0.25 for deer and wild pigs and a threshold of >0.55 for raccoons
(Fig. 2).

The threshold value that represented the best tradeoff between type
Il errors and total images flagged for deer was 0.35. At this threshold
value and for night images, there were 1098 images correctly classified

Table 1
Concordance tables for white-tailed deer using the semi-automated system using a
threshold value of 0.35 for a) night images, b) day images, and ¢) day and night images.

Manual-only
Deer present Deer absent Total
a) Night
AnimalFinder Deer present 1098 6144 7242
Deer absent 367 28,937 29,304
Total 1465 35,081 36,546
b) Day
AnimalFinder Deer present 46 2382 2428
Deer absent 66 26,250 26,316
Total 112 28,632 28,744
c) Night + day
AnimalFinder Deer present 1144 8526 9670
Deer absent 433 55,187 55,620
Total 1577 63,713 65,290

as deer presence, 28,937 images correctly classified as deer absence,
6144 type I errors, and 367 type Il errors (Table 1). At the same thresh-
old for the day images, there were 46 images correctly classified as deer
presence, 26,250 images correctly classified as deer absence, 2382 type |
errors, and 66 type II errors. Cohen's kappa, estimating observer agree-
ment, for the adjusted presence/absence dataset was 0.838.

The manual-only and AnimalFinder-derived count histories
contained 756 observations per site (15,120 observations in total). For
each image review method, deer were detected at 17 of the 20 sites.
The manual-only count history contained 436 observations with one
deer counted, 63 with two deer, 11 with three deer, and 1 with four
deer. The AnimalFinder count history contained 317 observations with
one deer counted, 48 with two deer, 11 with three deer, and 1 with
four deer.

p Time -+

p Rain- |

p Intercept ]

Lamda Intercept -

Lamda Developed

Model covariates

Lambda Pine ]

Lambda Mixed

Lambda Hardwood 7

Method
.AnimaIFinder
Manual-only

Beta estimates

Fig. 3. Model-averaged abundance (lambda) and probability of detection (p) beta estimates and 95% confidence intervals using all models with AnimalFinder results in black and manual-

only results in gray.
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Table 2

The AIC table including estimates of total abundance and detection probability for AnimalFinder (AF) and the manual-only method (MO) for models with model weight >0.01. Total abun-
dance was estimated by summing the site-specific abundance estimates and confidence intervals were estimated using parametric bootstrap analyses with 1000 simulations. Probability of
detection (p) and standard errors were averaged across all sites for each model. *Standard errors were 0.0011 for all manual models and 0.0010 for all AnimalFinder models.

Model Par. AIC Delta AIC AIC model Cumulative Total abundance Mean detection
weight weight probability*
- MO AF MO  AF MO  AF MO AF MO AF MO AF
lam( )p(time) 3 4639 3811 000 000 043 036 043 036 78(47,192) 76(46,185) 0.0101 0.0079
lam(Pine)p(time) 4 4641 3812 183 1.15 0.17 020 060 056 78(47,220) 77 (44,228) 0.0101 0.0078
lam(.)p(rain + time) 4 4641 3813 200 190 0.16 014 076 069 78(46,190) 76 (44,206) 0.0101 0.0079
lam(Dev + Pine)p(time) 5 4643 3813 383 280 006 009 083 078 78(47,234) 77(48,251) 0.0101 0.0077
lam(Pine)p(rain + time) 5 4643 3814 383 305 006 008 089 086 78(46,217) 76 (44,206) 0.0101 0.0078
lam(Hrdwd + Mixed + Pine)p(time) 6 4644 3814 464 382 004 005 093 091 79 (49,284) 8 (49,284) 0.0100 0.0077
lam(Dev + Pine)p(rain + time) 6 4645 3815 580 470 0.02 003 096 095 78(47,239 77 (46,276) 0.0101 0.0077
lam(Dev + Hrdwd + Mixed + Pine)p(time) 7 4645 3816 6.24 552 0.02 0.02 098 097 79 (48,314) 78 (48,356) 0.0100 0.0077
lam(Hrdwd + Mixed + Pine)p(rain + time) 7 4646 3816 6.61 580 0.02 0.02 099 099 79 (48,298) 8 (50,288) 0.0100 0.0077
lam(Dev + Hrdwd + Mixed + Pine) 8 4647 3818 821 742 0.01 001 100 1.00 79 (49,305) 78 (49,360) 0.0100 0.0077

p(rain + time)

The model-averaged deer abundance across all sites was estimated to be 78 deer (confidence interval (CI): 47, 211) using the manual-only method and 77 (CI: 46, 220) for the
AnimalFinder method. The model-averaged detection was 0.0101 (SE = 0.0011) for manual-only review and 0.0078 (SE = 0.0010) for AnimalFinder. Model-averaged beta estimates

and 95% confidence intervals were similar between both methods (Fig. 3).

Using the N-mixture modeling analysis for manual-only and
AnimalFinder data, each method resulted in the same model rankings
for all model weights of 0.01 or greater; however there were slight dif-
ferences in model weights between equivalent models (Table 2). Re-
sults from both methods ranked three models as competitive based on
delta 2 AIC. However the second and third-ranked models contained
only one additional parameter relative to the highest-ranked model, in-
dicating weak, if any, evidence that their addition improved model fit
(Burnham and Anderson, 2002). The highest-ranked model included
time of day as a detection covariate (manual-only model weight
[w] = 0.43; AnimalFinder w = 0.36), followed by the model with %
pine forest and time of day (manual-only w = 0.17; AnimalFinder
w = 0.20), and the model with rain and time of day (manual-only
w = 0.16; AnimalFinder w = 0.14). These models accounted for 0.76
of the cumulative model weight for the manual-only method and 0.70
for the AnimalFinder method.

The manual-only method required 16.84 h for four observers to clas-
sify animal presence/absence in 62,288 images with an average review
rate of 4274 images per hour. AnimalFinder required <5 min of manual
prep and 2.5 h of unassisted processing time to analyze the same set of
images using three threshold values, exceeding 26,000 images reviewed
per hour. We estimated that the average review rate for AnimalFinder
saved between 99.5% and 45.3% of presence-absence manual review
time for the same set of images, depending on the threshold value ap-
plied (Fig. 4). At a threshold value of 0.35, AnimalFinder saved 14.8 h
(~1 h per 4400 images) of manual review time compared to the manu-
al-only method.
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Fig. 4. Percent time savings for presence-absence review of camera trap images using
AnimalFinder relative to manual-only review under a range of threshold values.

4. Discussion

We demonstrated that our semi-automated approach for processing
time-lapse camera trap photos has the capacity to reduce effort and
overall monitoring costs for deer and other animals by reducing the
number of images from our data set requiring manual review. While
our dataset was relatively small (one season and twenty cameras), we
amassed over 60,000 images and realized a reduction of >70% of images
that required manual review due to AnimalFinder. The benefits of this
program could be significant for larger datasets that are the result of
long-term and large-scale surveys. For example, Alabama's Department
of Conservation and Natural Resources recently completed a 6-season
time-lapse camera survey at 256 camera sites each season generating
>3 million images (Price et al. unpublished data). Based on our results
in this study, the application of AnimalFinder could save up to 600 h
(15, 40-hour weeks) of presence/absence classification. This time sav-
ings may reduce lag time between data collection and project results,
which could translate to increased speed with which managers can uti-
lize results to inform decision-making. Financially, our program could
save the agency $5400 compared to employing a technician at a rate
pf $9 per hour to manually review images. These benefits may make
large-scale surveys and monitoring programs more cost and time effec-
tive to implement.

There are tradeoffs between cost/time savings and program perfor-
mance when using AnimalFinder which are important to consider
with regards to survey objectives. Employing a greater threshold level
decreased the number of photos with animals that are missed (type Il
errors), but also increased the number of photos with no animal present
flagged for review. In our study, the low rate of type Il errors in pres-
ence/absence image classification experienced when using our semi-
automated approach produced a negligible effect on our analysis of a
white-tailed deer population. Slight differences in estimated model
weights, covariate effects, and total abundance did not change the eco-
logical and demographic inference resulting from the study and is un-
likely to impact management decisions pertaining to the population.
We anticipate that, in most cases, a bias of a few individuals will be an
acceptable tradeoff given the time and cost savings attributed to the
new method. Still, it is important to consider the project objective and
the precision and accuracy required to inform decision-making. In
some cases, the decreased precision may affect management decisions.
For example, decreased precision in estimates of demographic parame-
ters for an endangered species may result in the selection of a different
management action relative to the alternative that would have been se-
lected using estimates obtained using manual-only image review and
hurt species recovery. We suggest utilizing recent quantitative methods
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to calculate the value of information for management such as the ex-
pected value of perfect information and expected value of sample infor-
mation to determine whether or not the decreased precision resulting
from using AnimalFinder is justifiable (Canessa et al., 2015; Williams
and Johnson, 2015).

We observed differences between estimates of detection probability
and related covariate effects between the manual-only method and
AnimalFinder. Detection probability is a parameter that accounts for
the probability of an animal being available for detection (i.e. in the
camera frame) and the conditional capture probability that the animal
is correctly detected given that it is available (O'Donnell et al., 2015;
Pollock et al., 2004; Pollock et al., 2006). Both components of detection
can affect parameter estimates (O'Donnell et al., 2015). AnimalFinder
does not influence the availability of target organisms, but we anecdot-
ally found that several environmental factors, including rain and time of
day, have the potential to influence the conditional capture probability
of AnimalFinder relative to the manual-only method. While there was
little evidence for the influence of rain on detection probability (and
any effect may also be attributed to its effect on animal availability),
rain drops on the camera lens sometimes blur the images and have
the potential to make animal bodies less likely to be detected. Similarly,
the presence of shadows in daytime photos can lead to type II errors by
obscuring an animal body. Utilizing methods aimed at sheltering cam-
eras from rain or removing shadows from images prior to analysis
(Finlayson et al., 2002; Prati et al,, 2003 ), and/or applying more complex
object detection algorithms, may further reduce false absences. Howev-
er, in most cases, including this study, detection probability is not a focal
parameter and differences in estimates or covariate relationships are
only a concern if it affects abundance and other demographic estimates
of interest to the extent that it alters a management decision (Williams
et al.,, 2002). Future studies may include covariates on availability and
conditional capture probabilities and model these components sepa-
rately. Pollock et al. (2006) and O'Donnell et al. (2015) have developed
such models which could lead to improved insights regarding the influ-
ence of bias in the conditional capture probability on estimates of pa-
rameter values of interest arising from semi-automated image review.

AnimalFinder committed more type II errors for wild pigs and rac-
coons than deer. A greater threshold value was required for pigs and
raccoons to achieve the same low level of type II errors obtained with
a deer when using a threshold value of 0.35. We believe that type Il er-
rors were produced when animals in a frame were directly in front of
the corn pile. Because the corn pile was present in a high frequency of
images, those pixels were ignored at low threshold values. Raccoons
and pigs were often captured when their bodies were in front of the
bait while they were feeding. This was less common with deer whose
taller stature kept their bodies above the corn pile. Thus, if the pixels
comprising the bait are ignored, animal bodies within that boundary
will be missed. Ultimately, the program could be improved by finding
a better way to filter out blobs that remain in a high frequency of the im-
ages while still allowing for the detection of new blobs within that same
space. For example, an additional layer or image processing could be in-
corporated that would characterize regions within the image based on
color, saturation, texture, or other image traits. Such methods could be
utilized as a “bait pile detector” which could help the program deter-
mine the orientation of the camera with respect to the bait and our ex-
pectation of detecting animals in different regions of the images (i.e. we
would not expect animals in sky or treetop portion of the image). In the
meantime, studies targeting raccoons, pigs, or animals with similar
characteristics (i.e. short-statured) may reduce false absences by posi-
tioning cameras lower to the ground to improve the angle of the ani-
mals with respect to the bait pile. However, repositioning of the
camera in such a way could also negatively affect later manual review
where animals in front of the camera block the view of other animals.
We may have experienced additional false negatives as a result of the
presence of some spotted pigs in our study because AnimalFinder was
developed to detect non-patterned animals that create monotone

blobs in the image processing. Considering that >95% of images contain-
ing wild pigs were identified when applying a high threshold value, we
feel that the program performed better than expected on patterned an-
imals, however, further testing is needed to validate AnimalFinder for
such animals. Although we did not estimate demographic parameters
for wild pigs or raccoons, our results suggest that AnimalFinder may
be used to reduce manual review efforts for count and occupancy
based studies for many medium and large bodied animals.

Ultimately, a careful evaluation of AnimalFinder and a range of
threshold values for potential target species using a subset of images
will be essential to inform users of the tradeoffs between type I and
type Il errors and lead to the most efficient use of the program. Re-
searchers may also examine the sensitivity of their decision models to
anticipate the level of precision required by the intended analyses. We
suggest conducting a pilot study by reviewing a subset of survey images
manually and conducting an analysis similar to ours to 1) evaluate effi-
cacy of using AnimalFinder to identify presence/absence and estimate
demographic parameters of the target animal, and 2) determine what
threshold value to employ given project needs. We also encourage
users to consider camera placement to reduce sources of error and nat-
ural blobs that may interfere with the ability of the program to identify
an animal occupying the same space in the images. For example, placing
bait in several small piles instead of one large pile may reduce type Il er-
rors related to animals within the bait pile.

AnimalFinder can provide numerous benefits to animal monitoring.
Using a semi-automated system to review camera trap images can re-
duce survey costs, lag time between data collection and data analysis,
and potentially reduce observer errors. It can be used in conjunction
with other programs and procedures developed in recent years to
streamline and reduce costs of time-lapse camera trap surveys (e.g.
Harris et al., 2010; He et al., 2016; Krishnappa and Turner, 2014). In-
creasing the efficiency of data management for such non-invasive sur-
vey techniques without significantly sacrificing analytical accuracy
may enable researchers and managers to better monitor animal popula-
tions and inform natural resource decision-making.

Funding

This work was supported by the Alabama Department of Conserva-
tion and Natural Resources (GO0006888).

Data accessibility

Data used for this research will be made available upon publication
on the Auburn University server.

Acknowledgements

This works was supported by the Alabama Department of Conserva-
tion and Natural Resources. Any use of trade, firm, or product names is
for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecoinf.2016.11.003.

References

Adams, ].D., Speakman, T., Zolman, E., Schwacke, LH., 2006. Automating image matching,
cataloging, and analysis for photo-identification research. Aquat. Mamm. 32:
374-384. http://dx.doi.org/10.1578/AM.32.3.2006.374.

Ardovini, A., Cinque, L., Sangineto, E., 2008. Identifying elephant photos by multi-curve
matching. Pattern Recogn. 41:1867-1877. http://dx.doi.org/10.1016/j.patcog.2007.
11.010.

Bolger, D.T., Morrison, T.A., Vance, B, Lee, D., Farid, H., 2012. A computer-assisted system
for photographic mark-recapture analysis. Methods Ecol. Evol. 3, 813-822.


http://dx.doi.org/10.1016/j.ecoinf.2016.11.003
http://dx.doi.org/10.1016/j.ecoinf.2016.11.003
http://dx.doi.org/10.1578/AM.32.3.2006.374
http://dx.doi.org/10.1016/j.patcog.2007.11.010
http://dx.doi.org/10.1016/j.patcog.2007.11.010
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0015
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0015

J.L. Price Tack et al. / Ecological Informatics 36 (2016) 145-151 151

Bubnicki, J.W., Churski, M., Kuijper, D.P.J., 2016. Trapper: an open source web-based appli-
cation to manage camera trapping projects. Methods Ecol. Evol.:n/a http://dx.doi.org/
10.1111/2041-210X.12571.

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Prac-
tical Information-theoretic Approach. Springer Science & Business Media.

Burton, A.C,, Neilson, E., Moreira, D., Ladle, A, Steenweg, R,, Fisher, ].T., Bayne, E., Boutin, S.,
2015. REVIEW: wildlife camera trapping: a review and recommendations for linking
surveys to ecological processes. J. Appl. Ecol. 52:675-685. http://dx.doi.org/10.1111/
1365-2664.12432.

Canessa, S., Guillera-Arroita, G., Lahoz-Monfort, ].J., Southwell, D.M., Armstrong, D.P.,
Chades, I, Lacy, R.C., Converse, SJ., 2015. When do we need more data? A primer
on calculating the value of information for applied ecologists. Methods Ecol. Evol. 6:
1219-1228. http://dx.doi.org/10.1111/2041-210X.12423.

Cohen, ]., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20,
37-46.

Cohn, J.P., 2008. Citizen science: can volunteers do real research? Bioscience 58:192-197.
http://dx.doi.org/10.1641/B580303.

Core Team, R,, 2015. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

Damm, P.E., 2010. Using Automated Cameras to Estimate Wildlife Populations. Auburn
University.

Damm, P.E,, Grand, J.B., Barnett, S.W., 2010. Variation in detection among passive infrared
triggered-cameras used in wildlife research. Proc Annu Conf Southeast Assoc Fish
Wildl Agen, pp. 125-130.

Fegraus, E.H,, Lin, K., Ahumada, J.A,, Baru, C,, Chandra, S., Youn, C., 2011. Data acquisition
and management software for camera trap data: a case study from the TEAM net-
work. Ecol. Inform. 6, 345-353.

Finlayson, G.D., Hordley, S.D., Drew, M.S., 2002. Removing shadows from images. In:
Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (Eds.), Computer Vision — ECCV
2002, Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 823-836.

Fiske, I, Chandler, R., 2011. Unmarked: an R package for fitting hierarchical models of
wildlife occurrence and abundance. J. Stat. Softw. 43, 1-23.

Giman, B,, Stuebing, R., Megum, N., Mcshea, W.]., Stewart, C.M., 2007. A camera trapping
inventory for mammals in a mixed use planted forest in Sarawak. Raffles Bull. Zool.
55, 209-215.

Gope, C., Kehtarnavaz, N., Hillman, G., Wiirsig, B., 2005. An affine invariant curve
matching method for photo-identification of marine mammals. Pattern Recogn. 38:
125-132. http://dx.doi.org/10.1016/j.patcog.2004.06.005.

Hamel, S., Killengreen, S.T., Henden, ].-A., Eide, N.E., Roed-Eriksen, L., Ims, R.A., Yoccoz,
N.G., 2013. Towards good practice guidance in using camera-traps in ecology: influ-
ence of sampling design on validity of ecological inferences. Methods Ecol. Evol. 4:
105-113. http://dx.doi.org/10.1111/j.2041-210x.2012.00262.X.

Harris, G., Thompson, R., Childs, ].L., Sanderson, J.G., 2010. Automatic storage and analysis
of camera trap data. Bull. Ecol. Soc. Am. 91:352-360. http://dx.doi.org/10.1890/0012-
9623-91.3.352.

He, Z., Kays, R., Zhang, Z., Ning, G., Huang, C., Han, T.X., Millspaugh, ., Forrester, T., McShea,
W., 2016. Visual informatics tools for supporting large-scale collaborative wildlife
monitoring with citizen scientists. IEEE Circuits Syst. Mag. 16:73-86. http://dx.doi.
org/10.1109/MCAS.2015.2510200.

Karanth, K.U., Nichols, ].D., Kumar, N.S., Hines, J.E., 2006. Assessing tiger population dy-
namics using photographic capture-recapture sampling. Ecology 87, 2925-2937.
Keever, A.C., 2014. Use of N-mixture Models for Estimating White-tailed Deer Populations

and Impacts of Predator Removal and Interspecific Competition. Auburn University.

Krishnappa, Y.S., Turner, W.C,, 2014. Software for minimalistic data management in large
camera trap studies. Ecol. Inform. 24:11-16. http://dx.doi.org/10.1016/j.ecoinf.2014.
06.004.

Meek, P.D., Ballard, G.-A., Fleming, P.J.S., 2015. The pitfalls of wildlife camera trapping as a
survey tool in Australia. Aust. Mammal. 37, 13-22.

Newey, S., Davidson, P., Nazir, S., Fairhurst, G., Verdicchio, F., Irvine, RJ., van der Wal, R,
2015. Limitations of recreational camera traps for wildlife management and conser-
vation research: a practitioner's perspective. Ambio 44:624-635. http://dx.doi.org/
10.1007/s13280-015-0713-1.

Niedballa, J., Sollmann, R., Courtiol, A., Wilting, A., 2016. camtrapR: an R package for effi-
cient camera trap data management. Methods Ecol. Evol.:n/a http://dx.doi.org/10.
1111/2041-210X.12600.

0'Connell, A.F., Nichols, ].D., Karanth, K.U., 2010. Camera Traps in Animal Ecology:
Methods and Analyses. Springer Science & Business Media.

O'Donnell, KM., Thompson III, F.R,, Semlitsch, R.D., 2015. Partitioning detectability com-
ponents in populations subject to within-season temporary emigration using binomi-
al mixture models. PLoS One 10, e0117216.

Pollock, K.H., Marsh, H,, Bailey, L.L, Farnsworth, G.L., Simons, T.R,, Alldredge, M.W., 2004.
Separating components of detection probability in abundance estimation: an over-
view with diverse examples. In: Thompson, W.L. (Ed.), Sampling Rare or Elusive Spe-
cies: Concepts, Designs, and Techniques for Estimating Population Parameters. Island
Press, USA, pp. 43-58.

Pollock, K.H., Marsh, H.D., Lawler, LR., Alldredge, M.W., 2006. Estimating animal abun-
dance in heterogeneous environments: an application to aerial surveys for dugongs.
J. Wildl. Manag. 70, 255-262.

Prati, A., Mikic, L, Trivedi, M.M., Cucchiara, R., 2003. Detecting moving shadows: algo-
rithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25:918-923. http://dx.
doi.org/10.1109/TPAMI.2003.1206520.

Raj, A., Choudhary, P., Suman, P., 2015. Identification of tigers through their pugmark
using pattern recognition. Open Int. J. Technol. Innov. Res. 15.

Rovero, F., Zimmermann, F., Berzi, D., Meek, P., 2013. “Which camera trap type and how
many do [ need?” A review of camera features and study designs for a range of wild-
life research applications. Hystrix Ital. J. Mammal. 24, 148-156.

Rowcliffe, ].M., Carbone, C., 2008. Surveys using camera traps: are we looking to a brighter
future? Anim. Conserv. 11:185-186. http://dx.doi.org/10.1111/j.1469-1795.2008.
00180.x.

Royle, J.A.,, 2004. N-mixture models for estimating population size from spatially replicat-
ed counts. Biometrics 60:108-115. http://dx.doi.org/10.1111/j.0006-341X.2004.
00142.x.

Swann, D.E., Hass, C.C,, Dalton, D.C., Wolf, S.A., 2004. Infrared-triggered cameras for de-
tecting wildlife: an evaluation and review. Wildl. Soc. Bull. 32:357-365. http://dx.
doi.org/10.2193/0091-7648(2004)32[357:ICFDWA]2.0.CO;2.

Swann, D.E., Kawanishi, K., Palmer, ]., 2011. Evaluating types and features of camera traps
in ecological studies: a guide for researchers. Camera Traps in Animal Ecology.
Springer, pp. 27-43.

Swinnen, K.R.R, Reijniers, ]., Breno, M,, Leirs, H., 2014. A novel method to reduce time in-
vestment when processing videos from camera trap studies. PLoS One 9, e98881.
http://dx.doi.org/10.1371/journal.pone.0098881.

Weingarth, K., Zimmermann, F., Knauer, F., Heurich, M., 2012. Evaluation of six digital
camera models for the use in capture-recapture sampling of Eurasian lynx (Lynx
lynx). Waldokologie Landschaftsforschung Naturschutz 1-6.

Weinstein, B.G., 2015. MotionMeerkat: integrating motion video detection and ecological
monitoring. Methods Ecol. Evol. 6:357-362. http://dx.doi.org/10.1111/2041-210X.
12320.

Williams, B.K., Johnson, F.A., 2015. Value of information in natural resource management:
technical developments and application to pink-footed geese. Ecol. Evol. 5:466-474.
http://dx.doi.org/10.1002/ece3.1363.

Williams, B.K., Nichols, ].D., Conroy, M.J., 2002. Analysis and Management of Animal Pop-
ulations. Academic Press.


http://dx.doi.org/10.1111/2041-210X.12571
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0025
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0025
http://dx.doi.org/10.1111/1365-2664.12432
http://dx.doi.org/10.1111/1365-2664.12432
http://dx.doi.org/10.1111/2041-210X.12423
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0040
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0040
http://dx.doi.org/10.1641/B580303
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0050
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0050
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0055
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0055
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0060
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0060
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0060
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0065
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0065
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0065
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0070
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0070
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0070
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0075
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0075
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0080
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0080
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0080
http://dx.doi.org/10.1016/j.patcog.2004.06.005
http://dx.doi.org/10.1111/j.2041-210x.2012.00262.x
http://dx.doi.org/10.1890/0012-9623-91.3.352
http://dx.doi.org/10.1890/0012-9623-91.3.352
http://dx.doi.org/10.1109/MCAS.2015.2510200
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0105
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0105
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0110
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0110
http://dx.doi.org/10.1016/j.ecoinf.2014.06.004
http://dx.doi.org/10.1016/j.ecoinf.2014.06.004
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0120
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0120
http://dx.doi.org/10.1007/s13280-015-0713-1
http://dx.doi.org/10.1111/2041-210X.12600
http://dx.doi.org/10.1111/2041-210X.12600
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0135
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0135
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0140
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0140
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0140
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0145
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0145
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0145
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0145
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0150
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0150
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0150
http://dx.doi.org/10.1109/TPAMI.2003.1206520
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0160
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0160
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0165
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0165
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0165
http://dx.doi.org/10.1111/j.1469-1795.2008.00180.x
http://dx.doi.org/10.1111/j.1469-1795.2008.00180.x
http://dx.doi.org/10.1111/j.0006-341X.2004.00142.x
http://dx.doi.org/10.1111/j.0006-341X.2004.00142.x
http://dx.doi.org/10.2193/0091-7648(2004)32[357:ICFDWA]2.0.CO;2
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0185
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0185
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0185
http://dx.doi.org/10.1371/journal.pone.0098881
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0195
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0195
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0195
http://dx.doi.org/10.1111/2041-210X.12320
http://dx.doi.org/10.1111/2041-210X.12320
http://dx.doi.org/10.1002/ece3.1363
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0210
http://refhub.elsevier.com/S1574-9541(16)30112-1/rf0210

	AnimalFinder: A semi-�automated system for animal detection in time-�lapse camera trap images
	1. Introduction
	2. Methods
	2.1. How the program works
	2.2. Evaluation of program performance

	3. Results
	4. Discussion
	Funding
	Data accessibility
	Acknowledgements
	Appendix A. Supplementary data
	References


